Construction of a Cyclic Tricubane Cluster $[Cp*_2Mo_2Fe_2S_4]_3(\mu-S_4)_3$ from the Mo_2Fe_2S_4 Single **Cubane Component**

Hiroyuki Kawaguchi, Kazuhiro Yamada, Shiho Ohnishi, and Kazuyuki Tatsumi*

> Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464, Japan

> > Received July 14, 1997

Over the past two decades, extensive efforts have been made to synthesize mixed-metal sulfido clusters of high nuclearity, and exploitation of new cluster components continues to be an imperative step for accomplishing unprecedented arrangements of large core structures.¹ In particular, construction of clusters containing iron and/or molybdenum is one of the major objectives in this field. Although spontaneous self-assembly has been a dominant strategy for the synthesis of such clusters,² more rational approaches to aggregation of cluster units have also emerged.³ For instance, dicubane clusters [(Fe₄S₄Cl₃)₂(µ-S)]⁴⁻, [{MoFe₃S₄Cl₂(Cl₄cat)}₂(μ -S)₂]⁶⁻, and [{MoFe₃S₄Cl₂(Cl₄cat)}₂(μ -S)(μ -L)]ⁿ (L = N₂H₄, n = 4; L = CN, OH, n = 5) were prepared by treating the corresponding single cubane complexes with Na₂S, (Et₄N)₂S, and NEt₄OH/L₂S.^{4,5} Recently, it was reported that reaction of $[Fe_4S_4Cl_4]^{2-}$ with PR₃ and subsequent reduction resulted in fusion of two and four cubane cores. 6,7 In this paper, we report the synthesis of a new class of Mo₂Fe₂S₄ cubane complex, Cp*₂Mo₂Fe₂S₄Cl₂ (1; Cp* = η^{5} -C₅Me₅), and the formation of a novel cyclic tricubane cluster $[Cp*_2Mo_2Fe_2S_4]_3(\mu-S_4)_3$ (2), from the reaction of 1 with Li₂S₂.

We previously reported a C-S bond cleaving reaction of $Cp*Mo(S^tBu)_3$ (3) leading to a Mo(VI) thio/thiolate complex,

(2) (a) Nordlander, E.; Lee, S. C.; Cen, W.; Wu, Z. Y.; Natoli, C. R.; Di Cicco, A.; Filipponi, A.; Hedman, B.; Hodgson, K. O.; Holm, R. H. *J. Am. Chem. Soc.* **1993**, *115*, 5549–5558. (b) Holm, R. H. *Adv. Inorg. Chem.* **1992**, *38*, 1–71. (c) You, J.-F.; Snyder, B. S.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. **1990**, *112*, 1067–1076. (d) Holm, R. H.; Simhon, E. D. In *Molybdnum Enzyme*; Spiro, T. G., Ed.; Wiely-Interscience: New York, 1985; Chapter 1. (e) Holm, R. H. Chem. Soc. Rev. 1981, 10, 455-490.

(3) Coucouvanis, D. Acc. Chem. Res. 1991, 24, 1-8.

(4) Challen, P. R.; Koo, S.-M.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 2455-2456.

Chem. Soc. 1990, 112, 2453–2450. (5) (a) Challen, P. R.; Koo, S.-M.; Kim, C. G.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 8606–8607. (b) Coucou-vanis, D.; Challen, P. R.; Koo, S.-M.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181–4183.

(6) Goh, C.; Segal, B. M.; Huang, J.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. **1996**, 118, 11844–11853. (7) (a) The reaction of (NEt₄)₂[MoFe₃S₄Cl₃(Cl₄cat)(CH₃CN)] with

Figure 1. The structure of Cp*₂Mo₂Fe₂S₄Cl₂ (1) showing 50% thermal ellipsoids. Selected bond distances (Å): Mo1-Mo2 2.8219(7), Mo1-Fe1 2.760(1), Mo1-Fe2 2.761(1), Mo2-Fe1 2.753(1), Mo2-Fe2 2.754(1), Fe1-Fe2 2.791(1), Fe1-Cl1 2.180(3), Fe2-Cl2 2.197(2), Mo-S av 2.332, Fe-S av 2.263.

Cp*Mo(S)₂(S^tBu).⁸ This reaction was facilitated by oxidants such as S₈ and grey selenium, and we anticipated that FeCl₃ would promote $\breve{C}-\breve{S}$ bond cleavage as well. Thus, the complex 3 was treated with 1 equiv of FeCl₃ in THF to give immediately a dark red solution, and a further color change was noticed when the solution was stirred at room temperature for 12 h. Removal of the solvent and recrystallization of the resulting solid from CH₂Cl₂/hexane generated an unexpected tetranuclear cluster $Cp*_2Mo_2Fe_2S_4Cl_2$ (1) as black crystals in 39% yield.⁹ The combustion analysis was in agreement with the formula, and the ¹H NMR spectrum in CDCl₃ showed a broad singlet at 1.81 ppm (Cp*, the width at half-height $v_{1/2} = 33$ Hz) indicating a weak paramagnetic nature of the compound. According to the cyclic voltammetric experiment, one reversible redox couple appears at -0.88 V ($E_{1/2}$ vs SCE) and one irreversible oxidation occurs at 1.14 V (E_p vs SCE).¹⁰ While there is uncertainty in defining oxidation states of the metal components, a plausible allotment may be Mo(IV) + Fe(II). Then reduction of iron from Fe(III) to Fe(II) is considered to occur during the cluster formation with the concomitant C-S bond breaking process.

As shown in Figure 1, the X-ray analysis revealed that complex 1 consists of a distorted Mo₂Fe₂S₄ cubane core. Two Cp* ligands and two Cl atoms further coordinate at the molybdenum and the iron sites, respectively.¹¹ Alternatively, the core structure can be viewed as a Mo₂Fe₂ tetrahedron facecapped by four sulfur atoms. While the main structural feature of 1 resembles closely that of $Cp'_2Mo_2Fe_2S_4(NO)_2$ (4; Cp' = η^{5} -C₅Me₄Et),^{12a} their electron counts are different. The latter complex 4 is an electron-precise system with 60 cluster electrons,^{13,14} and the four metal atoms are connected through direct metal-metal single bonds. On the other hand, the Mo₂- Fe_2 tetrahedral core of 1 carries 56 electrons, i.e., 4 electrons less than 4, which is consistent with paramagnetism of the cluster. The electron-deficiency of 1 affects the Fe-Fe distance most significantly, being 0.087 Å longer than that of 4. The

The potentials are reported vs saturated calomel electrode, SCE. (11) Crystal data for Cp*₂Mo₂Fe₂S₄Cl₂ (1): monoclinic, $P_{21/n}$ (No. 14), a = 9.526(2) Å, b = 14.997(2) Å, c = 18.917(3) Å, $\beta = 95.97(1)^{\circ}$, V = 2688.8(8) Å³, Z = 8, $D_c = 1.910$ g/cm³, $2\theta_{max} = 50.0^{\circ}$, 5260 measured reflections of which 3755 with $I > 3.00\sigma(I)$ were used for the refinement to give R = 0.036, $R_w = 0.049$, and GOF = 1.92. (12) (a) Mansour, M. A.; Curtis, M. D.; Kampf, J. W. Organometallics **1997**, 16, 275–284. (b) Recently, (C₅Me₄Et)₂Mo₂Co₂S₄X₂ (X = Cl, Br, I) were reported: Mansour, M. A.; Curtis, M. D.; Kampf, J. W. Organome-tallics **1997**, 16, 3363–3370

(13) (a) Trinh-Toan; Teo, B. K.; Ferguson, J. A.; Meyer, T. J.; Dahl, L.
F. J. Am. Chem. Soc. 1977, 99, 408–416. (b) Bottomley, F.; Grein, F. Inorg. Chem. 1982, 21, 4170–4178. (c) Mingos, D. M. P. Chem. Soc. Rev. 1986, 15.31 - 61.

(14) Harris, S. Polyhedron 1989, 8, 2843-2882.

^{(1) (}a) Dance, I; Fisher, K. Prog. Inorg. Chem. 1994, 41, 637-803. (b) Routledge, C. A.; Humanes, M.; Li, Y.-J.; Sykes, A. G. J. Chem. Soc., Dalton Trans. **1994**, 1274–1282. (c) Shibahara, T. Coord. Chem. Rev. **1993**, 123, 73-147. (d) Coucouvanis, D. Acc. Chem. Res. 1981, 14, 201-209. (e) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934-955.

NaBPh₄ (or NaPF₆) in the presence of PR₃ was reported to give the edge-linked double cubanes $Mo_2Fe_6S_8(PR_3)_6(Cl_4cat)_2$: Demadis, K. D.; Campana, C. F.; Coucouvanis, D. J. Am. Chem. Soc. **1995**, 117, 7832–7833. (b) It was reported that treatment of [Fe₄S₄I(ArNC)₉] with KBAr₄ afforded [{Fe₄S₄(ArNC)₉}₂][BAr₄]₂: Harmjanz, M.; Saak, W.; Haase, D.; Pohl, S. J. Chem. Soc., Chem. Commun. 1997, 951-952.

⁽⁸⁾ Kawaguchi, H.; Yamada, K.; Lang, J.; Tatsumi, K. J. Am. Chem. Soc. **1997**, *119*, 10346–10358. (9) For Cp*₂Mo₂Fe₂S₄Cl₂ (**1**): ¹H NMR (CDCl₃) δ 1.81 (br, s, $\nu_{1/2} =$

⁽³⁾ Hz); UV-vis (THF) λ_{max} (c, M⁻¹ cm⁻¹) 299 (20 000), 459 (1600), 551 (760), 603 (530) nm. Anal. Calcd for C₂₀H₃₀S₄Mo₂Fe₂Cl₂: C, 31.07; H, 3.91; S, 16.59. Found: C, 30.92; H, 3.91; S, 16.28.

⁽¹⁰⁾ The cyclic voltammograms of 1 and 2 were recorded in THF solution on a glassy carbon electrode with Bu₄NClO₄ as the supporting electrolyte. The potentials are reported vs saturated calomel electrode, SCE.

Figure 2. The structure of $[Cp_{2}Mo_{2}Fe_{2}S_{4}]_{3}(\mu-S_{4})_{3}(2)$ showing 50% thermal ellipsoids; Cp* groups are omitted for clarity. Selected bond distances (Å) and angles (deg): Mo–Mo* 2.760(2), Mo–Fe1 2.802-(2), Mo–Fe2 2.800(2), Fe1–Fe2* 2.610(3), Mo–S1 2.325(3), Mo–S2 2.296(3), Mo–S3 2.325(2), Fe1–S1 2.197(4), Fe1–S2 2.267(3), Fe1–S4 2.213(3), Fe2–S2 2.163(3), Fe2–S3 2.193(4), Fe2–S4* 2.214-(3), Fe1–S4–Fe2* 72.2(1), S4–Fe1–S4* 83.4(1).

Mo–Mo distance of 2.8219(7) Å and the mean Mo–Fe bond length of 2.757 Å are both comparable to the corresponding distances of **4** (Mo–Mo, 2.8419(7) Å; Mo–Fe, 2.7654(7) Å). Although various $M_2M'_2S_4$ clusters having cyclopentadienyl auxiliaries are known,^{12,14,15} most of them were procured with π -acceptor ligands such as CO and NO. Thus, a unique feature of **1** is chloride ligation to each iron atom, which has the advantage of serving as a potential building unit for the synthesis of polycubane cluster aggregate.

The aggregation of **1** was accomplished by treating it with dry Li₂S₂ in THF,¹⁶ and an unprecedented tricubane cluster $[Cp*_2Mo_2Fe_2S_4]_3(\mu-S_4)_3$ (2) was isolated as black crystals in 84% yield by recrystallization from toluene.¹⁷ The Mo:Fe:S ratio of 1:1:4 was consistent with the X-ray fluorescence microanalysis, and the molecular structure was determined by the X-ray analysis, where the crystals were found to be solvated by toluene.¹⁸ Three Mo₂Fe₂S₄ cubane skeletons are linked by three μ_2, η^2 -S₄(2-) ligands, as shown in Figure 2. Each S₄-(2-) ligand bridges two Fe atoms of different cubanes, which is situated perpendicular to the Fe-Fe vector. Being crystallized in the hexagonal $P6_3/m$ space group, the molecule has crystallographic D_{3h} symmetry. A C_3 axis runs through the center of molecule, and all Fe atoms and six cubane S atoms, S1 and S3, lie in a mirror plane. Within each cubane core, the Mo-Mo distance is 0.06 Å shorter than that of 1, and Mo–Fe distances are elongated by 0.04 Å. Most significant difference between the cubane geometries of 1 and 2 is that there is no direct Fe-Fe interaction for 2 and the iron atoms are separated by 3.235-(2) Å. Instead, a new intercubane Fe-Fe bond is formed with the distance of 2.610(3) Å. As this intercubane Fe-Fe bonding is taken into account, the tetrahedral Mo₂Fe₂ unit has 62 cluster electrons, and the consequence is the long Fe-Fe distance within the cubane simply because the extra two electrons must reside in an antibonding molecular orbital.^{12,19,20} It is of interest to

Figure 3. Positive electrospray ionization mass spectrum of $[Cp^*_{2^-}Mo_2Fe_2S_4]_3(\mu-S_4)_3$ (2). The inset shows (a) an expansion of the 2 + H⁺ peaks and (b) the calculated isotopic distribution of the ion.

Scheme 1

propose another Fe–Fe σ -bond alternation geometry **2'** as illustrated in Scheme 1. If the intercubane Fe–Fe bond is cleaved, then the Mo₂Fe₂ core becomes electron precise and the intracubane Fe–Fe bond would be formed. This bond isomer **2'** should electronically be feasible,^{20,21} and a certain electronic perturbation may induce transformation from the observed structure **2** to **2'**.

As one would expect from the above electron count, the tricubane cluster 2 is diamagnetic, and the Cp* proton signal appears at 1.93 ppm as a sharp singlet in the ¹H NMR spectrum. Interestingly, 2 is quite soluble in toluene and THF in spite of the large size of the cluster. The UV-vis spectrum in toluene exhibits a characteristic absorption at 412 nm, while the spectrum of 1 is featureless. The redox property of 2 also differs from 1, and it is characterized by three reversible redox couples at 0.69, 0.26, and -0.11 V ($E_{1/2}$ vs SCE) and one irreversible reduction step at -0.85 V (E_p vs SCE).¹⁰ The electrospray ionization mass (ESI) spectrometry, carried out by adding a small amount of acetic acid to a THF solution of 2, deserves comment.²² The positive ion ESI spectrum, provided in Figure 3, clearly shows two sets of ion peaks associated with monoand di-protonated species, $[M + H]^+$ and $[M + 2H]^{2+}$, with the correct isotope distributions. The tricubane structure is readily protonated under the mass condition, and such species might well be generated in a preparative scale. Further study of reactivity of 1 and 2 is currently underway.

Supporting Information Available: Experimental procedures and a table listing data for crystal dada, atomic coordinates, bond lengths and angles, and anisotropic displacement parameters for **1** and **2** (24 pages). See any current masthead page for ordering and Internet access instructions.

JA972330Y

^{(15) (}a) Wachter, J. Angew. Chem., Int. Ed. Engl. 1989, 28, 1613–1626.
(b) Cowans, B. A.; Haltiwanger, R. C.; Rakowski DuBois, M. Organometallics 1987, 6, 995–1004.

⁽¹⁶⁾ Tatsumi, K.; Inoue, Y.; Kawaguchi, H.; Kohsaka, M.; Nakamura, A.; Cramer, R.; VanDoorne, W.; Taogoshi, G. J.; Richmann, P. N. *Organometallics* **1993**, *12*, 352–364.

⁽¹⁷⁾ For $[Cp^*_2Mo_2Fe_2S_4]_3(\mu$ -S4)_3 (2): ¹H NMR (C₆D₆) δ 1.93 (s); UVvis (THF) λ_{max} (ϵ , M⁻¹ cm⁻¹) 412 (30 000), 470 (5800), 645 (2900) nm. Anal. Calcd for C₆₇H₉₈S₂₄Mo₆Fe₆: C, 31.15; H, 3.82; S, 29.78. Found: C, 31.47; H, 4.19; S, 30.95.

⁽¹⁸⁾ Crystal data for $[Cp*_2Mo_2Fe_2S_4]_3(\mu-S_4)_3 \cdot C_7H_8$ (2): hexagonal, $P6_3/m$ (No. 176), a = 16.264(8) Å, c = 19.949(6) Å, V = 4572(3) Å³, Z = 2, $D_c = 1.877$ g/cm³, $2\theta_{max} = 55.0^\circ$, 2109 measured reflections of which 1305 with $I > 3.00\sigma(I)$ were used for the refinement to give R = 0.043, $R_w = 0.054$, and GOF = 1.87.

^{(19) (}a) Koide, Y.; Bautista, M. T.; White, P. S.; Schauer, C. K. Inorg. Chem. **1992**, *31*, 3690–3692. (b) Inomata, S.; Tobita, H.; Ogino, H. Inorg. Chem. **1992**, *31*, 722–723. (c) Lockemeyer, J. R.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. **1989**, *111*, 5733–5738. (d) Bedard, R. L.; Dahl, L. F. J. Am. Chem. Soc. **1986**, *108*, 5933–5942.

⁽²⁰⁾ Houser, E. J.; Rauchfuss, T. B.; Wilson, S. R. Inorg. Chem. 1993, 32, 4069-4076 and references therein.

⁽²¹⁾ Chisholm, M. H.; Clark, D. L.; Hampden-Smith, M. J. J. Am. Chem. Soc. **1989**, 111, 574–586.

⁽²²⁾ The electrospray mass spectrum was obtained on a Perkin-Elmer API 300 mass spectrometer.